

Electronics and Electrical Technology

Circuit Technology

Audio and video AS-10

Name:

Class:

ID-Nr.:

AS-10 Audio and video

The trainee learns to know how to transfer the knowledge

The trainee learns how to make a video podcast

The trainee learns to work with color tables, to use the right font and to use the right pictures

The trainee learns the functionality for CCTV cameras and compression codes

AS – 10 Audio and Video

Knowledge transfer methods

How to make the own podcast?

Camera characteristics

Compression codes

کیة المدربین التقنیین Technical Treiners College	Electronics and Electrical Technology AS-10 Kn Schricel Treiners College Audio and Video							owledge transfer methods						
C						1.	Wi kno you tra to	nich owle u kn nsfe othe	me edge ow er ye er pe	ethc e tr ? H our ers	ods ans low kno ons	of fer ca owl	∙ dc n y lede) You ge
						2.	De me	cide etho	e ho d fo	ow (or	goo	d is	s e	ach
Example: To read a book is a good knowledge transfer method and good for a self study training.							U U Pre	tra sel ne ork i eser	inin If st two n G it yo	ig b udy rke rou	y a tra d tr ups res	tea aini ain an ult.	ach ng ning d	ner J
22/2010														page

Knowledge transfer methods

Knowledge transfer methods -Answers from other students

- Video lessons, online courses
- Group work
- Learn from Audio CD
- Podcast, e-learning
- Using forums, visit a factory
- Solve equations
- Learning by doing, experiment, simulation
- Weblink as required reading
- Read a book

كية المدربين التغنين Technical Trainers College	Electronics and E AS-10 Audio and Video	ctronics and Electrical Technology 10 dio and Video				Knowledge transfer methods						
		Which method is suitable for which kind of knowledge transfer?										
		Dokumentation	On the job	Online help	Book	Social Networks	Classroom Training	Webinar	E-Learning	Video Tutorials	Podcast	Event Recordings
Instructor lead Formal	d											
Self-study Self driven		X										
Peer to peer Networked			X									
8/22/2010												page 6

Listen to the podcasts and fill in the table below

podcast	Answer				
Security fun, to	Understandable				
much monitors	Time				
	Quality, design				
	Remarks				
Mathematics,	Understandable				
Binary division	Time				
	Quality, design				
	Remarks				
LAN network functionality	Understandable				
	Time				
	Quality, design				
	Remarks				
CCTV, Megapixel	Understandable				
cameras	Time				
	Quality, design				
	Remarks				
Oscilloscope functionality	Understandable				
	Time				
	Quality, design				
	Remarks				
Webinar	Understandable				
recording about	Time				
(only some	Quality, design				
minutes)	Remarks				

تعلية المعربين التقنيين Technical Toxiner College	Electronics and Electrical Technology AS-10 Audio and Video	Video podcast examples
		Coffee & CCTV SIEMENS Megapixel or mega-myth?
4 th podcast: C0 made by Siem	CTV and megapixel cameras, ens, 2009	
		presented by BT Academy International
5 th podcast: os (made by a TT	cilloscope functionality C student, winter 2010)	
		DISCOVERING KNOWLEDGE
6 th podcast ma	ide by TTC winter 2012	
8/22/2010		page 9

AS – 10 Audio and Video

✓Knowledge transfer methods

How to make the own podcast?

Camera characteristics

Compression codes

How to produce a podcast

What do you have to consider to produce a video podcast?

8/22/2010

Rules to produce a TTC podcast

- Subject: digital and analogue electronics from 1st or 2nd semester
- Minimum time for the podcast 8 Minutes, maximum time 12 minutes
- Target group: other students at 1st and 2nd semester
- All students have to use the same 1st and the same last page.
- All students have to use the same color table.
- The student has to create a rough concept
- The student has to create the script (What to speak during podcast) for Audio at the PowerPoint notes
- The student has to develop the PowerPoint slides.
- The student has to speak the Audio files in PowerPoint and has to produce the WMV file (EN).
- Grading (60%) at the end of the semester.

Corporate design

- A corporate design is the official graphical design of a company used on letterheads, envelopes, forms, folders, brochures, etc. The house style is created in such a way that all the elements are arranged in a distinctive design and pattern.
- Corporations do have special design needs based on their behaviors. They communicate their mission, objectives, needs, and product information -- with users, clients, or members; with suppliers, distributors, service providers; with the surrounding community and the media; with financial institutions and other corporations, and with the state.
- A designer whose client is a corporation will include the logo and other elements of the corporate brand as a way to standardize and unify all communication between company and audience, whether in print or online
- These interactions are increasingly taking place through Web sites, through mobile devices and at dedicated terminals, and may include sound, video, animation and user feedback mechanisms. A savvy designer will create designs that can be adapted to all of these applications.

How to produce a podcast

Example of a start page

Content Content Content Content Content Content Content Content

Example for learning with an computer

8/22/2010

page 20

AS-10 video and audio equipment

Electronics and Electrical Technology AS-10

Progress

and Don't Look

Back

By Mohammed Dgase , Riyadh, technical trainer college , 2011

Rough concept to produce the own podcast.

Student na ID	me and		
Subject and	d Task Nr.		
Target defi what to lea	nition, arn		
Target grou (pre knowl	up edge)		
Part (module)	title	5	Small description

Podcast rough concept

Student name and ID	Example			
Subject and Task Nr.	How to convert a bi Task Nr. 134	nary number t	o decimal	
Target definition, what to learn	After watching this p able to convert bina	oodcast the st ry number to	udent is decimal.	Small description
Target group (pre knowledge)	Students 2 nd semes Pre Knowledge fron mathematics neces	ter n 1 st semester sary.		WelcomingSubjecttodayWhat to learn
				 Time for podcast Made by
		2	Number systems	 Short explain of different number systems (BIN, DEC, HEX) What's the difference
		3	Binary number system	 Where to use Properties (base, applications) Advantages, disadvantages
		4	Converting	Explain on the method on example 1101
		5	Exercise	 Repeat step 4 with example 101011
		6	Conclusion	 Repeat step 2 – 5 (short form) Where additional information Good bye
8/22/2010				nage /3

<u> </u>								_	_	_	_							_						_				_
		-	1			-																1						1
		}	}	}	 	}·	}			 								 				 }	}		{	}{		
		-																										1
		i	L		 	i	L			 								 				 ļ	L			i		
		i i			i i	i i														i							. 1	
																												1
		+			 	÷				 								 				 					;	i
		-	1																									1
					 ¦	+				 								 				 ¦						
		i			i i	i														i								1
		į	ļ		 į	į				 		Ļ		i				 i	!			 į	ļ			i	ļ	
		ļ	L	L	 	ļ	L			 		L						 				 ļ	L					
1																												í –
					 					 								 				 	L					Ļ
1			1																	İ								
					 	ļ				 								 				 					İ	L
1		ĺ	1			ĺ																1						1
		į	Ļ		 i	į	i			 				i				 		i		 į				i	i	
L 1																												1
L		l	l	L	 	l	L		L	 		L		!				 !				 l	L	L]	!		í
L		l	L	L		l	L		L	 								 	L			 l	L	L				L
L		i				İ	L			 								 				 	L				İ	L
·										 												 	[]					
· · · ·		[[[
			1			-																1						1
		T			 	T				 						7	7	 		7	7	 r	F		7			
	í)			 (ĵ				 			(·					 		j)j)	
L 1		i i			i .	i i																					. 1	
		<u> </u>			 (<u>.</u>				 								 				 <u> </u>						
																												1
		;			 	†				 								 				 						[
			1																									1
		+ 	+		 1	†	+			 								 				 +						
1						l														İ								
	i	†	;		 i	†	;			 			i					 				 i	·				(j	
																												1
	{	¦	}		 {	ţ	h			 								 				 }						
L																												í –
		<u> </u>	<u></u>		 	+·				 								 				 						
L																												1
		+			 	+				 					İ			 	İ			 <u>}</u>						
L		1																										1
		:				:												 										(I

Podcast fine concept

*What is the impedance? Is the ratio of V total to I total , is measured in ohms and the symbol Z, the impedance also causes a phase different between the total current and the source voltage.

*resistance symbol= R unit= Ω RT=R1+R2+R3 Circuit

Here you can see a part of a fine concept. Improve it!

8/22/2010

I all of the fille concept	Dart	of th	no fi	onco	nt
	ιαπ	UI U			μ

	<> What is impedance?
	It is only an other word for the total resistance <> The word total resistance is used in circuits with only resistors <> The word Impedance is used in circuits with different units, like capacitor and resistor <> Or inductor and resistor <> If you use the Ohms law, for both
+	circuits you can use the same formula.

AS-10 video and audio equipment

🚹 Re-Order 🛃

▶ Play 🔄 Slide Show

.

🔄 Change 🔻 塔 Remove

Medium 1 🏠 🔆 TextBox 10: Impedance Recorded Sound

After Previous

🔆 TextBox 14: total resista.. TextBox 28: = Recorded Sound 🔆 Picture 38 Recorded Sound TextBox 35: R2 🔆 TextBox 34: R1 🕒 🛛 🔆 Picture 38

Recorded Sound 🔆 TextBox 37: R TextBox 36: XC 🕒 🔺 Picture 38

> Recorded Sound 🔆 TextBox 39: R 🔆 TextBox 38: XL 🔆 Object 100 Recorded Sound 🔆 Object 100

Modify: Fade

Start:

Speed:

Podcast fine concept

*The impedance of a series RL circuit is determine by the resistance and the inductive reactance. inductive reactance is expressed as a pharos quantity in rectangular form as XL=jXL *In the series RL circuit the total impedance is the pharos sum or R and jXL and is expressed as Z=R+jXL Here you can see a part of a fine concept. Improve it! Design a PowerPoint sheet with all the animations.

8/22/2010

- > As you know impedance is the same like the total resistance in circuits with same units
- > For example in this series circuit the total resistance is the sum of the two resistors:
- > R total equals R one plus R two.
- > It is easy because all voltages, all currents, all resistances have the same direction.
- If we convert the inductivity L to reactance XL, then also this circuit contains 2 resistors, R and XL.
- > But the voltages of this two units have different directions, like in a triangle.
- > To calculate the impedance as the sum of R and XL, we have to consider the rule of Pythagoras. In mathematics C squared equals A squared plus B squared.
- > In electronics Z squared equals R squared plus XL squared.

fine concept to produce the own podcast.

Student name and ID				
Subject	and Task	Nr.		
Target o what to	Target definition, what to learn			
Target g (pre kno	group owledge)			
Module	Page		Page title	text

علية المربين التقرير Technical Treiners College	Electron AS-10 Audio an	i cs and El e d Video	ectrical Tecl	nnology		Podcast fine concept
Student name and ID	Exam	ple				
Subject and Task Nr.	How to Task N	convert a r. 134	a binary nu	mber to decimal	1	
Target definition, what to learn	After w able to	atching th convert b	nis podcast pinary num	the student is ber to decimal.		
Target group (pre knowledge)	Studen Pre Kn mather	ts 2 nd ser owledge f natics neo	nester from 1 st sei cessary.	mester		
		Module	Page	Page title		Small description
		1	1	welcoming	<pre><anima 5th="" <anima="" conv="" decima="" kingdo<="" knowle="" of="" po="" pre="" s="" su="" the="" this="" to="" welcoi=""></anima></pre>	ation step 1> me to the podcast series discovering edge. ation step 2> bject today: How to convert a binary number to al. After watching this video the student is able vert binary figures to decimal. ation step 3> bdcast is made by Mohammed Dgase, student semester at technical trainer college in Riyadh, im of Saudi Arabia.
8/22/2010 page 49						
			1 1			

Custom Animation 🔹 🗙
EA change w Ka Berraue
Ex Change + 120 Kellove
Modity effect
Start:
Property:
Speed:
1 🏠 ▷ Recorded Sound example
💸 Line 87
🔭 Rectangle 86
🔆 Text Box 95: The cam
B Recorded Sound dtep 2
🔉 Group 3
🔆 Rectangle 25: Transmi
Second Sound Step 3
🔆 Picture 135
🐞 Text Box 96: The moni
Re-Order 🖶
▶ Play Slide Show
AutoPreview
90% 😑 🛛 🕀 🔠

AS – 10 Audio and Video

✓Knowledge transfer methods

 \checkmark How to make the own podcast?

Camera characteristics

Compression codes

Video equipment

Light sensitivity

The produced picture is only good, if the light outside has the same intensity like the sensors light sensitivity.

□More light outside than the sensor sensitivity will produce a white picture

□less light outside than the sensor sensitivity will produce a black picture

It is a sunny day in Saudi Arabia again. The light outside is 25000 LUX. But the image sensor needs only 2.5 LUX at a exposure time for 1/50 s to produce a good picture. The aperture is closed and has a ratio for 100:1.

Determine the necessary exposure time to produce a good picture.

It is a sunny day in Saudi Arabia again. The light outside is 50000 LUX. For the used camera see the properties at the datasheet below. The aperture is set to a ratio 500:1. Determine the necessary exposure time to produce a good color picture.

Lenses	22 to 135 mm format, horizontal angle 90° to 15°, CS lenses can also be used (see CS adapter)
Sensitivity	Color: 1 lux (t=1/60 s), 0.05 lux (t=1/1 s) B/W: 0.1 lux (t=1/60 s), 0.005 lux (t=1/1 s)
Sensor	1x or 2 x 1/2" CMOS, progressive scan
Max. image resolution	Color: 2048 x 1536 (3Mega), Black/white: 1280 x 960 (Mega)
Image format	2048 x 1536, 1280 x 960, 1024 x 768, 800 x 600, 768 x 576 (D1), 704 x 576 (TV-PAL), 640 x 480, 384 x 288, 352 x 288, 320 x 240, 160 x 120, Free image format selection (e.g. 1000 x 200 for skyline
Max frame rate (M-JPEG) (Live/Recording)	VGA: 16 fps, TV-PAL: 12 fps, Mega: 6 fps, 3Mega: 4 fp.
Video stream (MxPEG) (Live/Recording/Audio)	VGA: 30 fps, TV-PAL: 24 fps, Mega: 14 fps, 3Mega: 10 fps
Image compression	MxPEG, M-JPEG, JPG, H.263 (Video-VolP-Telephony)

page 60

It is dark night in Saudi Arabia again. The light outside is only 0.01 LUX. For the used camera see the properties at the datasheet below. The aperture is wide open and is set to a ratio 1:1. Determine the necessary exposure time to produce a good black/white picture.

Lenses22 to 135 mm format, horizontal angle 90° to 15°, CS lenses can also be used (see CS adapter)SensitivityColor: 1 lux (t=1/60 s), 0.05 lux (t=1/1 s) B/W: 0.1 lux (t=1/60 s), 0.005 lux (t=1/1 s)Sensor1x or 2 x 1/2" CMOS, progressive scanMax. image resolutionColor: 2048 x 1536 (3Mega), Black/white: 1280 x 960 (Mega)Image format2048 x 1536, 1280 x 960, 1024 x 768, 800 x 600, 768 x 576 (D1), 704 x 576 (TV-PAL), 640 x 480, 384 x 288, 352 x 288, 320 x 240, 160 x 120, Free image format selection (e.g. 1000 x 200 for skylinMax frame rate (M-JPEG) (Live/Recording)VGA: 30 fps, TV-PAL: 24 fps, Mega: 14 fps, 3Mega: 10 fpsVideo stream (MxPEG) (Live/Recording/Audio)VGA: 30 fps, TV-PAL: 24 fps, Mega: 14 fps, 3Mega: 10 fps		
Sensitivity Color: 1 lux (t=1/60 s), 0.05 lux (t=1/1 s) B/W: 0.1 lux (t=1/60 s), 0.005 lux (t=1/1 s) Sensor 1x or 2 x 1/2" CMOS, progressive scan Max. image resolution Color: 2048 x 1536 (3Mega), Black/white: 1280 x 960 (Mega) Image format 2048 x 1536, 1280 x 960, 1024 x 768, 800 x 600, 768 x 576 (D1), 704 x 576 (TV-PAL), 640 x 480, 384 x 288, 352 x 288, 320 x 240, 160 x 120, Free image format selection (e.g. 1000 x 200 for skylin Max frame rate (M-JPEG) Video stream (MxPEG) (Live/Recording/Audio) VGA: 30 fps, TV-PAL: 24 fps, Mega: 14 fps, 3Mega: 10 fps Image compression MxPEG, M-JPEG, JPG, H.263 (Video-VolP-Telephony)	Lenses	22 to 135 mm format, horizontal angle 90° to 15°, CS lenses can also be used (see CS adapter)
Sensor1x or 2 x 1/2" CMOS, progressive scanMax. image resolutionColor: 2048 x 1536 (3Mega), Black/white: 1280 x 960 (Mega)Image format2048 x 1536, 1280 x 960, 1024 x 768, 800 x 600, 768 x 576 (D1), 704 x 576 (TV-PAL), 640 x 480, 384 x 288, 352 x 288, 320 x 240, 160 x 120, Free image format selection (e.g. 1000 x 200 for skylinMax frame rate (M-JPEG)VGA: 16 fps, TV-PAL: 12 fps, Mega: 6 fps, 3Mega: 4 fl (Live/Recording/Audio)Video stream (MxPEG) (Live/Recording/Audio)VGA: 30 fps, TV-PAL: 24 fps, Mega: 14 fps, 3Mega: 10 fpsImage compressionMxPEG, M-JPEG, JPG, H.263 (Video-VolP-Telephony)	Sensitivity	Color: 1 lux (t=1/60 s), 0.05 lux (t=1/1 s) B/W: 0.1 lux (t=1/60 s), 0.005 lux (t=1/1 s)
Max. image resolution Color: 2048 x 1536 (3Mega), Black/white: 1280 x 960 (Mega) Image format 2048 x 1536, 1280 x 960, 1024 x 768, 800 x 600, 768 x 576 (D1), 704 x 576 (TV-PAL), 640 x 480, 384 x 288, 352 x 288, 320 x 240, 160 x 120, Free image format selection (e.g. 1000 x 200 for skylin Max frame rate (M-JPEG) Video stream (MxPEG) VGA: 16 fps, TV-PAL: 12 fps, Mega: 6 fps, 3Mega: 4 fi (Live/Recording) Video stream (MxPEG) VGA: 30 fps, TV-PAL: 24 fps, Mega: 14 fps, 3Mega: 10 fps Image compression MxPEG, M-JPEG, JPG, H.263 (Video-VolP-Telephony)	Sensor	1x or 2 x 1/2" CMOS, progressive scan
Image format 2048 x 1536, 1280 x 960, 1024 x 768, 800 x 600, 768 x 576 (D1), 704 x 576 (TV-PAL), 640 x 480, 384 x 288, 352 x 288, 320 x 240, 160 x 120, Free image format selection (e.g. 1000 x 200 for skylin Max frame rate (M-JPEG) VGA: 16 fps, TV-PAL: 12 fps, Mega: 6 fps, 3Mega: 4 f (Live/Recording) Video stream (MxPEG) VGA: 30 fps, TV-PAL: 24 fps, Mega: 14 fps, 3Mega: 10 fps Image compression MxPEG, M-JPEG, JPG, H.263 (Video-VolP-Telephony)	Max. image resolution	Color: 2048 x 1536 (3Mega), Black/white: 1280 x 960 (Mega)
Max frame rate (M-JPEG) VGA: 16 fps, TV-PAL: 12 fps, Mega: 6 fps, 3Mega: 4 f (Live/Recording) Video stream (MxPEG) Video stream (MxPEG) VGA: 30 fps, TV-PAL: 24 fps, Mega: 14 fps, 3Mega: (Live/Recording/Audio) 10 fps Image compression MxPEG, M-JPEG, JPG, H.263 (Video-VoIP-Telephony)	Image format	2048 x 1536, 1280 x 960, 1024 x 768, 800 x 600, 768 x 576 (D1), 704 x 576 (TV-PAL), 640 x 480, 384 x 288, 352 x 288, 320 x 240, 160 x 120, Free image format selection (e.g. 1000 x 200 for skyling
Video stream (MxPEG) VGA: 30 fps, TV-PAL: 24 fps, Mega: 14 fps, 3Mega: (Live/Recording/Audio) 10 fps Image compression MxPEG, M-JPEG, JPG, H.263 (Video-VolP-Telephony)	Max frame rate (M-JPEG) (Live/Recording)	VGA: 16 fps, TV-PAL: 12 fps, Mega: 6 fps, 3Mega: 4 fp
Image compression MxPEG, M-JPEG, JPG, H.263 (Video-VolP-Telephony	Video stream (MxPEG) (Live/Recording/Audio)	VGA: 30 fps, TV-PAL: 24 fps, Mega: 14 fps, 3Mega: 10 fps
	Image compression	MxPEG, M-JPEG, JPG, H.263 (Video-VolP-Telephony)

page 61

Video equipment

Remember and see the two pictures below. How was the aperture in each of them? Opened or closed?

8/22/2010

Video equipment

Light sensitivity

Long shutter speed Disadvantage: blurry moving objects

Advantage: more brightness during time with less light (night).

SG-999999 fast shutter speed

□Short shutter speed

Disadvantage: needs more light than normal to produce a good picture

Advantage: shart and readable picture from moving objects.

slow shutter speed

8/22/2010

Video equipment

Light sensitivity

With a very very long shutter speed cameras can produce good pictures during nighttime with illumination close to 0 LUX.

But moving objects are not readable.

□The example shows a picture with exposure time of 30 seconds.

Video equipment

Calculate the distance, which the car drives during every shutter phase. Do we get a sharp picture?

The Shutter speed is adjusted to 1/50 The car drives with 30 km/h

8/22/2010

Video equipment

A camera with minimum illumination of 0.1 LUX has to be observe objects. Determine the maximum distance if the light source value = 100000 LUX.

AS – 10 Audio and Video

✓Knowledge transfer methods

✓How to make the own podcast?

✓ Camera characteristics

Compression codes

Listen to the podcast and fill in the table below

Question		Answer	
List different video data compression solutions.			
What is an "I" and a "P" frame?			
How long can you record a common video stream with M-JPEG or MPEG- 4 on a CD?			
Explain how does a MPEG-4 recording works.			
List advantages and disadvantages of MPEG-4 compression.			
Compare M-JPEG		M-JPEG	MPEG-4
and MPEG-4 with bandwidth. CPU	Bandwidth		
load and	CPU load		
compatibility.	compatibility		

Listen to the podcast and fill in the table below

Question	Answer
On which parameters depends the file size of a picture?	
On which parameters depends the needed HD space for video recording?	
What's the formula to estimate the needed HD space for video recording	
What's the value for the factor "a" in case for continuous recording?	
What's the formula to determine the file size of a picture at given bandwidth?	
کید المدربین التقنین	

Technical Trainers College	

Electronics and Electrical Technology AS-10 Audio and Video

page 73

12

Fill in the table and mark, what are video compression methods.

Codec	Yes, it is a video compression method	No, it is not a video compression method
MP3		
M-JPEG		
BMP		
MPEG-4		
H.264		
MPEG-4 AVC		
PPT slide		

8/22/2010

بين التقنيين Technical Train	Electronics and Electrical Technology AS-10 Audio and Video	Compression
2	A MPEG-4 video codec with I and P fra working. What is a P frame?	ames is
•		
Α	A full picture on the position "P" (A = the1 st , B = 2 nd P = the 16 th picture) of the videostream.	
В	A picture of the videostream with only the difference information to the previus picture.	
С	A picture of the videostream with only the difference information to the subsequent picture.	
D	A picture of the videostream, compressed with the "P" (pressure) method.	

ربين التقنيين Technical Train	Electronics and Electrical Technology AS-10 Audio and Video	Compression
2	A MPEG-4 video codec with I and P f working. What is an I frame?	rames is
•		
Α	A full picture on the position "I" (A = the1 st , B = 2^{nd} I = the 9 th picture) of the videostream.	
A B	A full picture on the position "I" (A = the1 st , B = 2 nd I = the 9 th picture) of the videostream. A picture of the videostream with only the difference information to the previus picture.	
A B C	 A full picture on the position "I" (A = the1st, B = 2nd I = the 9th picture) of the videostream. A picture of the videostream with only the difference information to the previus picture. A full picture of the videostream used as reference picture for the following P frames. 	9

Electronics and Electrical Technology AS-10 Audio and Video

page 76

Fill in the table and mark, what are M-JPEG compression features

Feature	Yes, it is a M-JPEG feature	No, it is not a M-JPEG feature
Bad compatibility in different versions		
Good compatibility in different versions		
Bad compression efficiency		
Good compression efficiency		
Low CPU consumption		
High CPU consumption		

8/22/2010

Electronics and Electrical Technology AS-10 Audio and Video

page 77

Fill in the table and mark, what are MPEG-4 compression features

Feature	Yes, it is a MPEG-4 feature	No, it is not a MPEG-4 feature
Bad compatibility in different versions		
Good compatibility in different versions		
Bad compression efficiency		
Good compression efficiency		
Low CPU consumption		
High CPU consumption		

8/22/2010

																									(Cc	m	۱p	re	es:	sic
•						\ €	Nh eff	nic ici	h er	vie	de y a	o	co d	ode us	es	ha 5 fe	IS ƏW	th ⁄s	e l to	be ra	st ge	CC CC	om ap	ipi ac	es ity	ssi /?	ioı	n			
A			Μ	I-JI	PE	G																									
E	3		Μ	IPE	ΞG	-4	Ve	ers	ior	n 9)																				
C	;		M	IPE	ΞG	i-4	SI	>/A	S	Ρ																					
C)		Н	.26	64																										
_																															
22/201	10																													р	age 7
			<u> </u>								 		 	 																	
			+																												
		Ì									 																				
		<u> </u>											i 	i 																	
			┼╍┼										 																		
1 I		<u> </u>					ļ				 		 	 			i						 	i 	İ						
		<u></u>	+																												
			i 1				+l																								
							ļİ							·										+							-
					+						 		 !			1	1	i		i			İ		I						

A video recorder is working with M-JPEG compression. Determine the storage space to record continuous one camera for 24 hours with 25 pictures per second. Each picture is 35 Kbyte large. A About 51 MByte B About 51 MByte C About 3 GByte D About 72 GByte	A video recorder is working with M-JPEG	mpressi
A About 51 MByte B About 875000 Byte C About 3 GByte D About 72 GByte 200	continuous one camera for 24 hours with 2 per second. Each picture is 35 Kbyte large.	to record 5 pictures
B About 875000 Byte C About 3 GByte D About 72 GByte 2010 page Image: state sta	A About 51 MByte	
C About 3 GByte D About 72 GByte 2010 page Image: Contract of the second sec	B About 875000 Byte	
About 72 GByte 2010 pag	C About 3 GByte	
	D About 72 GByte	
	/2010	page
	{{{}}{}{}}{}}-	
	······································	
-+++++++++++++-		

A video recorder is working with M-JPEG compression. The used bandwidth for one came 4.79 Mbit/s. Determine the needed HD space for cameras and 2 days continuous recording. About 303 GByte About 151 GByte About 101 GByte About 3 GByte	era is 3
About 303 GByte About 151 GByte About 101 GByte About 3 GByte	
About 151 GByte About 101 GByte About 3 GByte	
About 101 GByte About 3 GByte	
About 3 GByte	
	page
┤╌┝╌╞╌╞╌╞╌╞╌╞╌╞╌╞╌╞╌╞╌╞╌╞╌╞╌╞╌╞╌╞╌╞╌╞╌╞╌	
╷╴┼╴┼╶┼╶┼╶┼╶┼╶┼╶┼╶┼╶┼╶┼╶┼╶┼╴┼╶┼╶┼╶┼╶┼╴┼╴┼╴┼╴┼╴┼╴┼╴┼	
┤╌┾╌┾╌┾╌┼╌┼╌┼╌┼╌┽╌┽╌┽╌┽╌┽╌┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼	
$+ \cdot + \cdot + \cdot + \cdot + \cdot + \cdot + \cdot + \cdot + \cdot + \cdot$	
┥╾┝╾┝╾┾╾┿╌┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼╴┼╴┼╴┼	1 1

Thomas Hitzner Dipl. Engineer, MBA Germany